中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=
1
1+a•2-bt
•100%
,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區間[x1,x2]上的平均學習效率為η=
y2-y1
x2-x1
,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.
分析:(Ⅰ)由題意得
1
1+a•2-4b
=0.5
1
1+a•2-8b
=0.8
,由此能求出“學習曲線”的關系式.
(Ⅱ)設從第x個單位時間起的2個單位時間內的平均學習效率為η,令u=2-0.5x,能推導出在從第3個單位時間起的2個單位時間內的平均學習效率最高.
解答:解:(Ⅰ)由題意得
1
1+a•2-4b
=0.5
1
1+a•2-8b
=0.8

整理得
a•2-4b=1
a•2-4b=
1
4
,解得a=4,b=0.5,
所以“學習曲線”的關系式為y=
1
1+4•2-0.5t
•100%

(Ⅱ)設從第x個單位時間起的2個單位時間內的平均學習效率為η,則η=
1
1+4•2-0.5(x+2)
-
1
1+4•2-0.5x
(x+2)-x
=
2-0.5x
(1+2•2-0.5x)(1+4•2-0.5x)

令u=2-0.5x,則η=
u
(1+2u)(1+4u)
=
1
1
u
+8u+6

顯然當
1
u
=8u
,即u=
2
4
時,η最大,
u=
2
4
代入u=2-0.5x,得x=3,
所以,在從第3個單位時間起的2個單位時間內的平均學習效率最高.
點評:本題考查函數在生產生活中的實際應用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年濟寧質檢理)(12分)

已知某類學習任務的掌握程度與學習時間(單位時間)之間的關系為

,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:

(1)試確定該項學習任務的“學習曲線”的關系式

(2)若定義在區間上的平均學習效率為,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

科目:高中數學 來源:2012屆福建省福州市高二期末理科考試數學試卷 題型:填空題

已知某類學習任務的掌握程度與學習時間(單位時間)之間有如下函數關系:

(這里我們稱這一函數關系為“學習曲線”).

若定義在區間上的平均學習效率為,這項學習任務從在從第

單位時間起的2個單位時間內的平均學習效率最高.則=      

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=數學公式,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區間[x1,x2]上的平均學習效率為數學公式,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

科目:高中數學 來源:《函數的應用》2012年單元測試卷(南寧外國語學校)(解析版) 題型:解答題

已知某類學習任務的掌握程度y與學習時間t(單位時間)之間的關系為y=f(t)=,這里我們稱這一函數關系為“學習曲線”.已知這類學習任務中的某項任務有如下兩組數據:t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項學習任務的“學習曲線”的關系式f(t);
(Ⅱ)若定義在區間[x1,x2]上的平均學習效率為,問這項學習任務從哪一刻開始的2個單位時間內平均學習效率最高.

查看答案和解析>>

同步練習冊答案