中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
25
+
y2
9
=1
,F1,F2分別為其左右焦點,橢圓上一點M到F1的距離是2,N是MF1的中點,則|ON|的長是(  )
分析:根據橢圓的定義,得到|MF1|+|MF2|=10,根據點M到左焦點F1的距離為2,得到|MF2|=10-2=8,最后在△MF1F2中,利用中位線定理,得到|ON|的值.
解答:解:∵橢圓方程為
x2
25
+
y2
9
=1

∴橢圓的a=5,長軸2a=10,可得橢圓上任意一點到兩個焦點F1、F2距離之和等于10.
∴|MF1|+|MF2|=10
∵點M到左焦點F1的距離為2,即|MF1|=2,
∴|MF2|=10-2=8,
∵△MF1F2中,N、O分別是MF1、F1F2中點
∴|ON|=
1
2
|MF2|=4.
故選D.
點評:本題考查了三角形中位線定理和橢圓的定義等知識點,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知動點P(x,y)在橢圓
x2
25
+
y2
16
=1上,若A點坐標為(1,0),|
AM
|=1且
PM
AM
=0
,則|
PM
|
的最小值是
119
3
119
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知焦點在y軸上的橢圓方程為
x2
25-k
+
y2
k-9
=1
,則k的取值范圍為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1
,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點.設
PA
=λ1
AF
PB
=λ2
BF
,則λ12等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P是
x2
25
+
y2
9
=1(x≠0,y≠0)
上的動點P,F1、F2是橢圓的兩個焦點,O是坐標原點,若M是∠F1PF2的角平分線上一點,且
F1M
MP
=0
,則|
OM
|
的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓
x2
25
+
y2
9
=1
,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點.設
PA
=λ1
AF
PB
=λ2
BF
,則λ12等于(  )
A.-
9
25
B.-
50
9
C.
50
9
D.
9
25

查看答案和解析>>

同步練習冊答案