中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.
分析:利用定義在R上的單調遞增奇函數,當0≤θ≤
π
2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,等價于cosθ+msinθ<2m+2,當0≤θ≤
π
2
時恒成立,分離參數,確定其范圍,即可得到結論.
解答:解:∵當0≤θ≤
π
2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,函數是奇函數,

∴當0≤θ≤
π
2
時,f(cosθ+msinθ)<f(2m+2)恒成立,
∵函數是定義在R上的單調遞增函數,
∴cosθ+msinθ<2m+2,當0≤θ≤
π
2
時恒成立,
∴m>
2-cosθ
sinθ-2

令t=
cosθ-2
sinθ-2
,其幾何意義是(sinθ,cosθ)(0≤θ≤
π
2
)與(2,2)連線的斜率
1
2
<t<2

-2<
2-cosθ
sinθ-2
<-
1
2

∴m>-
1
2
點評:本題考查函數單調性與奇偶性的結合,考查恒成立問題,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、已知定義在R上的單調函數f(x)滿足:存在實數x0,使得對于任意實數x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,則(i)f(1)+f(0)=
0
(ii)x0的值為
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的單調函數f(x),存在實數x0,使得對于任意實數x1,x2總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且對任意正整數n,有an=
1
f(n)
bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對任意不小于2的正整數n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的單調函數y=f(x),當x<0時,f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并寫出適合條件的函數f(x)的一個解析式;
(2)數列{an}滿足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通項公式an的表達式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn
4
3
Tn
的大小,并加以證明;
③當a>1時,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
對于不小于2的正整數n恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃岡模擬)已知定義在R上的單調函數f(x),存在實數x0,使得對于任意實數x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對于任意正整數n,有an=
1
f(n)
bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關系,并給出證明;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對任意不小于2的正整數n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州三模)已知定義在R上的單調函數f(x),存在實數x0使得對任意實數x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對任意的正整數n.有an=
1
f(n)
bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關系,并給出證明.

查看答案和解析>>

同步練習冊答案