中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點P滿足:2 (O為坐標原點),點P的軌跡記為曲線C.

(1)求曲線C的方程,并討論曲線C的類型;

(2)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l斜率k的取值范圍.

(1)由2,得P是MN的中點.

設P(x,y),M(x1,mx1),N(x2,-mx2),依題意得:

消去x1,x2,整理得=1.

當m>1時,方程表示焦點在y軸上的橢圓;

當0<m<1時,方程表示焦點在x軸上的橢圓;

當m=1時,方程表示圓.

(2)由m>1知方程表示焦點在y軸上的橢圓,直線l與曲線C恒有兩交點,直線斜率不存在時不符合題意.

可設直線l的方程為y=kx+1,

直線與橢圓交點A(x3,y3),B(x4,y4).

⇒(m4+k2)x2+2kx+1-m2=0.

x3+x4=-,x3x4.

y3y4=(kx3+1)(kx4+1)=+1.

要使∠AOB為銳角,只需·>0,

∴x3x4+y3y4>0.

即m4-(k2+1)m2+1>0,可得m2>k2+1,

對于任意m>1恒成立.

而m2>2,∴k2+1≤2,-1≤k≤1.

所以k的取值范圍是[-1,1].

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:2
OP
=
OM
+
ON
(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:邢臺一模 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:2
OP
=
OM
+
ON
(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009年上海市虹口區北郊高級中學數學押題試卷(文理合卷)(解析版) 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年河北省邢臺市高考數學一模試卷(文科)(解析版) 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年上海市徐匯區高三(下)4月聯考數學試卷(解析版) 題型:解答題

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案