在1和2之間依次插入n
個正數(shù)
使得這
個數(shù)構(gòu)成遞增的等比數(shù)列,將這
個數(shù)的乘積記作
,令
.
(1)求數(shù)列{
}的通項(xiàng)公式;
(2)令
,設(shè)
,求
.
(1)
;(2)
.
解析試題分析:(1)由題意可設(shè)等比數(shù)列1,
,2的公比為
則
,
;根據(jù)題意可知![]()
所以
.
(2)由(1)和已知
得
,![]()
再由錯位相減法求得:
,進(jìn)而求出
.
試題解析:(1)法一:設(shè)等比數(shù)列1,
,2的公比為
則
,
; 2分
所以![]()
6分![]()
7分
(2)由已知
得
,![]()
由錯位相減法求得:
10分![]()
13分
(1)法二:設(shè)等比數(shù)列1,
,2的公比為
,
則
,
. ∴
. 4分![]()
![]()
,
7分
(1)法三:又![]()
由等比數(shù)列的性質(zhì)得:
∴
7分
考點(diǎn):1.等比數(shù)列的性質(zhì)應(yīng)用;2.錯位相減法求數(shù)列前n項(xiàng)和.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+bn=0的兩根,且a1=1.
(1)求證:數(shù)列
是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)函數(shù)f(n)=bn-t·Sn(n∈N*),若f(n)>0對任意的n∈N*都成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2-a1=8,a3=m.①當(dāng)m=48時,求數(shù)列{an}的通項(xiàng)公式;②若數(shù)列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
表示數(shù)列
的前
項(xiàng)和.
(1)若
為公比為
的等比數(shù)列,寫出并推導(dǎo)
的計(jì)算公式;
(2)若
,
,求證:
<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+
an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3
,數(shù)列
的前n項(xiàng)和為Tn,證明:Tn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
滿足:①
;②對于任意正整數(shù)
都有
成立.
(Ⅰ)求
的值;
(Ⅱ)求數(shù)列
的通項(xiàng)公式;
(Ⅲ)若
,求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com