某公司以每噸10萬元的價格銷售某種產品,每年可售出該產品1000噸,若將該產品每噸的價格上漲x%,則每年的銷售數量將減少
,該產品每噸的價格上漲百分之幾,可使銷售的總金額最大?
科目:高中數學 來源: 題型:解答題
已知函數f(x)的圖象與函數h(x)=x+
+2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區間[0,2]上為減函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
,
.
(1)求
的取值范圍,使
在閉區間
上是單調函數;
(2)當
時,函數
的最大值是關于
的函數
.求
;
(3)求實數
的取值范圍,使得對任意的![]()
,恒有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某通訊公司需要在三角形地帶
區域內建造甲、乙兩種通信信號加強中轉站,甲中轉站建在區域
內,乙中轉站建在區域
內.分界線
固定,且
=
百米,邊界線
始終過點
,邊界線
滿足
.
設
(
)百米,
百米.![]()
(1)試將
表示成
的函數,并求出函數
的解析式;
(2)當
取何值時?整個中轉站的占地面積
最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數
,若在定義域存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數
,試判斷
是否為“局部奇函數”?并說明理由;
(2)設
是定義在
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知兩條直線l1:y=m和l2:y=
,l1與函數y=|log2x|的圖象從左至右相交于點A、B,l2與函數y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當m變化時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com