中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓,左右焦點分別為
(1)若上一點滿足,求的面積;
(2)直線于點,線段的中點為,求直線的方程。
(1).(2)

試題分析:(1)由于橢圓定義可以得到,那么根據直角三角形得到,從而得到,得到面積的值。
(2)設出點A,B的坐標,代入橢圓方程中,然后作差,得到AB的斜率與AB的中點坐標關系進而求解。
解:(1)由第一定義,,即
由勾股定理,,所以.
(2)設,滿足,兩式作差,將代入,得,可得,直線方程為:
點評:解決該試題的關鍵是根據定義結合直角三角形勾股定理得到三角形的面積的值。并能利用點差法思想得到弦中點與直線的斜率的關系式。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

中心在坐標原點,焦點在軸上的橢圓的離心率為,且經過點。若分別過橢圓的左右焦點的動直線相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點,且離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果方程表示焦點在軸上的橢圓,則的取值范圍是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

一個頂點是,且離心率為的橢圓的標準方程是________________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)在平面直角坐標系中,已知橢圓)的左焦點為,且點上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經過橢圓的左焦點.求直線與該橢圓相交的弦長。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以橢圓的右焦點為圓心作一個圓,使此圓過橢圓中心并交橢圓于點M,N,
若過橢圓左焦點的直線MF1是圓的切線,則橢圓的離心率為                

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線過雙曲線右焦點,交雙曲線于兩點,
的最小值為2,則其離心率為(  )
A.B.C.2D.3

查看答案和解析>>

同步練習冊答案