中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知在數列{}中,
(1)求證:數列{}是等比數列,并求出數列{}的通項公式;
(2)設數列{}的前竹項和為Sn,求Sn

(1)詳見解析;(2)

解析試題分析:(1)要證明數列是等比數列,只需證明(常數),根據已知條件,將,代入整理,易得常數,首項,所以數列,從而解出的通項公式;
(2), 所以數列{}的前項的和分別是一個等比數列加一個常數列的和,等比數列是首項為2,公比為4的等比數列,常數列的前項的和為,兩和相加即為最后結果.
(1),
所以數列是以2為首項,以4為公比的等比數列,         4分
;   所以            6分
(2).   12分
考點:1.等比數列的定義;2.等式數列的前項和.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設數列的前項和為,已知為常數),,(1)求數列的通項公式;(2)求所有滿足等式成立的正整數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,,.
(1)求的值;
(2)求證:是等比數列,并求的通項公式
(3)數列滿足,數列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的首項
(1)求證:是等比數列,并求出的通項公式;
(2)證明:對任意的
(3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)(2011•天津)已知數列{an}與{bn}滿足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設cn=a2n+1﹣a2n﹣1,n∈N*,證明{cn}是等比數列
(Ⅲ)設Sn為{an}的前n項和,證明++…++≤n﹣(n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2014·隨州模擬)已知等比數列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數列{an}的通項公式.
(2)設數列{an}的前n項和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知成等比數列, 公比為, 求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的首項a1=2a+1(a是常數,且a≠-1),
an=2an-1+n2-4n+2(n≥2),數列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數列;
(2)設Sn為數列{bn}的前n項和,且{Sn}是等比數列,求實數a的值;
(3)當a>0時,求數列{an}的最小項.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

在等比數列{an}中,=1,=3,則的值是         

查看答案和解析>>

同步練習冊答案