如圖,已知直線
與拋物線
相切于點
)且與
軸交于點
為坐標原點,定點B的坐標為
.![]()
(1)若動點
滿足
|
=
,求點
的軌跡
.
(2)若過點
的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點
,試求
與
面積之比的取值范圍.
科目:高中數學 來源: 題型:解答題
經過點
且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知曲線
,曲線
,P是平面上一點,若存在過點P的直線與
都有公共點,則稱P為“C1—C2型點”.![]()
(1)在正確證明
的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線
與
有公共點,求證
,進而證明原點不是“C1—C2型點”;
(3)求證:圓
內的點都不是“C1—C2型點”.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知
,直線
, 動點
到
的距離是它到定直線
距離的
倍. 設動點
的軌跡曲線為
.
(1)求曲線
的軌跡方程.
(2)設點
, 若直線
為曲線
的任意一條切線,且點
、
到
的距離分別為
,試判斷
是否為常數,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓
:
的左、右焦點分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)點
是橢圓
上除長軸端點外的任一點,連接
,設
的角平分線
交
的長軸于點
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點
作斜率為
的直線
,使
與橢圓
有且只有一個公共點,設直線的
斜率分別為
。若
,試證明
為定值,并求出這個定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的頂點為原點,其焦點
到直線
:
的距離為
.設
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(Ⅰ) 求拋物線
的方程;
(Ⅱ) 當點
為直線
上的定點時,求直線
的方程;
(Ⅲ) 當點
在直線
上移動時,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為
,焦點在
軸上,中心在原點.若右焦點到直線
的距離為3.
(1)求橢圓的標準方程;
(2)設直線
與橢圓相交于不同的兩點
.當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點與橢圓
的右焦點重合,拋物線
的頂點在坐標原點,過點
的直線
與拋物線
交于A,B兩點,
(1)寫出拋物線
的標準方程 (2)求⊿ABO的面積最小值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com