中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=a(x-
1
x
)-21nx(a∈R).
(Ⅰ)曲線y=f(x)在點(1,f(1))處的切線方程是2x-y+b=0,求a,b的值
(Ⅱ)若a=
1
2
,討論函數f(x)的單調性,并求極值.
分析:(Ⅰ)求導函數,利用導數的幾何意義,求得a的值,再利用切點(1,f(1)在直線2x-y+b=0上,可得b的值;
(Ⅱ)求導函數,分類討論,利用導數的正負,可得函數的單調性及極值.
解答:解:(Ⅰ)由于函數f(x)=a(x-
1
x
)-21nx(a∈R)定義域為(0,+∞),f′(x)=a(1-
1
x2
)-
2
x

又由曲線y=f(x)在點(1,f(1))處的切線方程是2x-y+b=0,則f(1)=2a-2=2,解得a=2
∵f(1)=0,∴切點為(1,0)代入切線方程2x-y+b=0可得b=-2,
故a=2,b=-2.
(Ⅱ) 當a=
1
2
時,函數f(x)的定義域為(0,+∞),
f'(x)=
1
2
(1+
1
x2
)-
2
x
=
x2-4x+1
2x2

∴x∈(0,2-
3
)時,f'(x)>0,此時函數f(x)單調遞增;
x∈(2-
3
,2+
3
)時,f'(x)<0,此時函數f(x)單調遞減;
x∈(2+
3
,+∞)時,f'(x)>0,此時函數f(x)單調遞增;
又f(2-
3
)=-
3
-2ln(2-
3
)=-
3
+2ln(2+
3
),
f(2+
3
)=
3
-2ln(2+
3
).
故函數f(x)在區間(0,2-
3
),(2+
3
,+∞)上單調遞增,在區間(2-
3
,2+
3

上單調遞減;
x=2-
3
時,函數f(x)取得極大值-
3
+2ln(2+
3
),x=2+
3
時,函數f(x)取得極小值
3
-2ln(2+
3
).…(12分)
點評:本題考查導數知識的運用,考查導數的幾何意義,考查函數的單調性,考查分類討論的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案