中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(理)已知數列{log3(an+1)}(n∈N*)為等差數列,且a1=2,a2=8,則等于( )
A.
B.
C.
D.1
【答案】分析:由題意,可先由數列{log3(an+1)}(n∈N*)為等差數列,且a1=2,a2=8得出數列{log2(an-1)}的首項為1,公差為1,由此解出log3(an-1)=1+(n-1)×1=n,從而求出an=-1+2n,再研究an+1-an=2n+1-1-2n+1=2n即可得出=,結合等比數列的求和公式計算出所求的極限即可
解答:解:數列{log3(an+1)}(n∈N*)為等差數列,且a1=2,a2=8
數列的公差為log39-log33=1,
故log3(an+1)=1+(n-1)×1=n,即an+1=2n,an=-1+2n
∴an+1-an=2n+1-1-2n+1=2n
=
故答案為1
點評:本題考查數列與極限的綜合,考查了等差數列的性質,通項公式,對數的運算,等比數列的求和等,涉及到的知識點多,綜合性強,解題的關鍵是由題設條件求出an=-1+2n,難度較高.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(理)已知數列{an}是等差數列,且a1=-2,a1+a2+a3=-12.
(1)求數列{an}的通項公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求數列{an(bn+1)}的前n項和Tn的公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知數列{log3(an+1)}(n∈N*)為等差數列,且a1=2,a2=8,則
lim
x→∞
(
1
a2-a1
+
1
a3-a2
+
1
a4-a3
+…+
1
an+1-an
)
等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{log3(an-1)}(n∈N*)為等差數列,且a1=4,a4=82.
(1)求數列{an}的通項公式;
(2)求數列{nan}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

(理)已知數列{log3(an+1)}(n∈N*)為等差數列,且a1=2,a2=8,則數學公式等于


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    1

查看答案和解析>>

同步練習冊答案