中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,在五棱錐中,,.
(1)求證:;
(2)求點E到面SCD的距離;
(3)求二面角的大小.
(1)證明見解析(2)(3)
(1):據題意,BC,ED的延長線相交,設交點為F,則都為正三角形,且C,D為中點,從而,∴據三垂線定理,知.

(2):∵,又,
.
設點E到面SCD的距離為,則,故點E到面SCD的距離
(3)連AC,分別過B作,則即為二面角的平面角. 利用面積法,在中易得中易得,∴二面角.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

一個簡單多面體的直觀圖和三視圖如圖所示,它的主視圖和側視圖都是腰長為1的等腰直角三角形,俯視圖為正方形,E是PD的中點.
(1)求證:
(2)求證:;             
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在正三棱柱ABCA1B1C1中,點D在邊BC上,ADC1D
(1)求證:AD⊥平面BC C1 B1
(2)設EB1C1上的一點,當的值為多少時,
A1E∥平面ADC1?請給出證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1的底面邊長和側棱長都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,點O為底面對角線AC與BD的交點.
(Ⅰ)證明:A1O⊥平面ABCD;
(Ⅱ)求二面角D—A1A—C的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

 如圖,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2, ∠ACB=90°,D、E分別為AC、AA1的中點.點F為棱AB上的點.
(Ⅰ)當點F為AB的中點時.
(1)求證:EF⊥AC1
(2)求點B1到平面DEF的距離.
(Ⅱ)若二面角A-DF-E的大小為的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


                                                      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,E、F分別是AB、SC的中點。
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)設SD = 2CD,求二面角A-EF-D的大小;
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直角梯形ABCD中,AD∥BC,AB⊥AD,∠C=45°,AD=AB=2,把梯形沿BD折起成60°的二面角C′-BD-A.求:  (1)C′到平面ADB的距離;
(2)AC′與BD所成的角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DCEF分別是ABPB的中點.

(I)求證:EFCD
(II)求DB與平面DEF所成角的正弦值;
(III)在平面PAD內是否存在一點G,使G在平面PCB上的射影為△PCB的外心,若存在,試確定點G的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案