已知函數(shù)![]()
①當(dāng)
時(shí),求函數(shù)在
上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)
在
處取得極值,不等式
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍。
(1)最大值是
,最小值是
。(2)當(dāng)
單調(diào)遞減,在
單調(diào)遞增,當(dāng)
單調(diào)遞減(3)
解析試題分析:(1)當(dāng)![]()
1分
當(dāng)![]()
![]()
2分
又![]()
![]()
上的最大值是
,最小值是
。 3分
(2)![]()
當(dāng)
時(shí),令
。
單調(diào)遞減,在
單調(diào)遞增 5分
當(dāng)
恒成立
為減函數(shù) 6分
當(dāng)
時(shí),
恒成立
單調(diào)遞減 。 7分
綜上,當(dāng)
單調(diào)遞減,在
單調(diào)遞增,當(dāng)
單調(diào)遞減 8分
(3)
,依題意:![]()
9分
又
恒成立。即![]()
法(一)
在
上恒成立 10分
令
12分
當(dāng)
時(shí)![]()
14分
法(二)由
上恒成立。
設(shè)
10分
∴
11分
當(dāng)
恒成立,無最值
當(dāng)![]()
![]()
14分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):對(duì)于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對(duì)數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時(shí)要注意對(duì)數(shù)式對(duì)函數(shù)定義域的隱蔽,這類問題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識(shí),注重?cái)?shù)學(xué)思想的運(yùn)用
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)若
,解不等式
;
(2)若不等式
對(duì)一切實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若
,解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,
.
(1)若
,試判斷并證明函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),求函數(shù)
的最大值的表達(dá)式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對(duì)任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若
是函數(shù)
在點(diǎn)
附近的某個(gè)局部范圍內(nèi)的最大(小)值,則稱
是函數(shù)
的一個(gè)極值,
為極值點(diǎn).已知
,函數(shù)
.
(Ⅰ)若
,求函數(shù)
的極值點(diǎn);
(Ⅱ)若不等式
恒成立,求
的取值范圍.
(
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(其中
實(shí)數(shù),
是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時(shí),求函數(shù)
在點(diǎn)
處的切線方程;
(Ⅱ)求
在區(qū)間
上的最小值;
(Ⅲ) 若存在
,使方程
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com