(本小題滿分12分)在幾何體ABCDE中,∠BAC=
,DC⊥平面ABC,EB⊥平面ABC,F是BC的中點,AB=AC=BE=2,CD=1![]()
(Ⅰ)求證:DC∥平面ABE;
(Ⅱ)求證:AF⊥平面BCDE;
(Ⅲ)求證:平面AFD⊥平面AFE.
(Ⅰ) 先證DC//EB,再推出DC∥平面ABE;
(Ⅱ)證DC⊥AF,進一步AF⊥平面BCDE。
(Ⅲ)由(2)推出AF⊥EF,在直角梯形BCDE中,計算DF=
,EF=
,DE=![]()
證明EF⊥平面AFD,推出平面AFD⊥平面AFE.
解析試題分析:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC
∴DC//EB,
又∵DC
平面ABE,EB
平面ABE,
∴DC∥平面ABE………………………………………………(4分)
(Ⅱ)∵DC⊥平面ABC,
∴DC⊥AF,
又∵AF⊥BC,DC交BC于C
∴AF⊥平面BCDE……………………………………(8分)
(Ⅲ)由(2)知AF⊥平面BCDE,
∴AF⊥EF,在直角梯形BCDE中,計算DF=
,EF=
,DE=![]()
在三角形DEF中DF⊥EF,AF⊥EF,DF交AF于F
∴EF⊥平面AFD,又EF
平面AFE,
∴平面AFD⊥平面AFE.…………………………………………(12分)
考點:本題主要考查立體幾何中線面平行與垂直的證明。
點評:典型題,立體幾何中平行、垂直關系的證明及角的計算問題是高考中的必考題,本題難度不大,注意牢記定理巧妙地實現線線關系、線面關系及面面關系的相互轉化。
科目:高中數學 來源: 題型:解答題
(本小題12分) 如圖四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側棱與底邊長均為a,
且∠A1AD=∠A1AB=60°。![]()
①求證四棱錐 A1-ABCD為正四棱錐;
②求側棱AA1到截面B1BDD1的距離;
③求側面A1ABB1與截面B1BDD1的銳二面角大小。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點.![]()
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題12分)如圖,在長方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點,CF="AB=2CE," AB:AD:AA1=1:2:4.![]()
(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形
為底面的直棱柱被平面
所截而得.
,
為
的中點.![]()
(1)當
時,求平面
與平面
的夾角的余弦值;
(2)當
為何值時,在棱
上存在點
,使
平面
?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
(本題滿分12分)
如圖,已知三棱錐
的側棱
兩兩垂直,
且
,
,
是
的中點。
(1)求異面直線
與
所成角的余弦值;
(2)求直線BE和平面
的所成角的正弦值。![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com