中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2009•黃岡模擬)已知函數f(x)=
1-x2
(-1<x<0)
2x-2   (0≤x<1)
的反函數是f-1(x),解不等式f-1(-x)+x>0.
分析:利用平方開方和指對數運算法則,求出函數f(x)的反函數的表達式,從而得到f-1(-x)的分段形式的函數表達式,再進行分類討論,分別解關于x的不等式,最后綜合可得原不等式的解集.
解答:解:當-1<x<0時,由y=
1-x2
,得x=-
1-y2

當0≤x<1時,由y=2x-2,得x=log2(y+2)
∴f-1(x)=
-
1-x2
   (0<x<1)
log2(x+2)    (-1≤x<0)
,可得f-1(-x)=
-
1-x2
   (-1<x<0)
log2(-x+2)    (0<x≤1)

①當-1<x<0時,不等式f-1(-x)+x>0即-
1-x2
+x>0,沒有實數解;
②當0<x≤1時,不等式f-1(-x)+x>0即log2(-x+2)+x>0,
∵-x+2≥1,可得log2(-x+2)≥0,∴不等式log2(-x+2)+x>0在0<x≤1時恒成立
∴不等式f-1(-x)+x>0的解集為(0,1]
點評:本題給出分段函數,求函數的反函數表達式,并依此解關于x的不等式f-1(-x)+x>0,著重考查了反函數的求法和不等式的解法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•黃岡模擬)某地正處于地震帶上,預計20年后該地將發生地震.當地決定重新選址建設新城區,同時對舊城區進行拆除.已知舊城區的住房總面積為64am2,每年拆除的數量相同;新城區計劃用十年建成,第一年建設住房面積2am2,開始幾年每年以100%的增長率建設新住房,然后從第五年開始,每年都比上一年減少2am2
(1)若10年后該地新、舊城區的住房總面積正好比目前翻一番,則每年舊城區拆除的住房面積是多少m2?
(2)設第n(1≤n≤10且n∈N)年新城區的住房總面積為Snm2,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數是
2
2
個.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃岡模擬)定義在R上的偶函數y=f(x)滿足:
①對x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0則
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在區間[a,6-a]上恰有3個不同實根,實數a的取值范圍是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃岡模擬)已知函數f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函數f(x)的單調區間和極值;
(Ⅱ)若(et+2)x2+etx+et-2≥0對滿足|x|≤1的任意實數x恒成立,求實數t的取值范圍(這里e是自然對數的底數);
(Ⅲ)求證:對任意正數a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃岡模擬)四個大小相同的小球分別標有數字1、1、2、2,把它們放在一個盒子里,從中任意摸出兩個小球,它們所標有的數字分別為x,y,記ξ=x+y.
(1)求隨機變量ξ的分布列及數學期望;
(2)設“函數f(x)=x2-ξx-1在區間(2,3)上有且只有一個零點”為事件A,求事件A發生的概率.

查看答案和解析>>

同步練習冊答案