(本題滿分12分)
如圖,四棱錐
的側面
垂直于底面
,
,
,
,
在棱
上,
是
的中點,二面角
為![]()
![]()
(1)求
的值;
(2)求直線
與平面
所成角的正弦值.
科目:高中數學 來源: 題型:解答題
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,
,E、F分別是棱CC′與BB′上的點,且EC=BC=2FB=2.![]()
(1)求證:平面AEF⊥平面AA′C′C;
(2)求截面AEF與底面ABCD所成二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.![]()
(Ⅰ)求證:DM∥平面APC;
(II)求證:平面ABC⊥平面APC.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在長方體
中,
,
,
是棱
上一點,![]()
(1)若
為CC1的中點,求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的
,使得平面ABM⊥平面A1B1M,若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,已知三棱柱
的側棱與底面垂直,
,
,
,
分別是
,
的中點,點
在直線
上,且
;
(1)證明:無論
取何值,總有
;
(2)當
取何值時,直線
與平面
所成的角
最大?并求該角取最大值時的正切值;
(3)是否存在點
,使得平面
與平面
所成的二面角為30º,若存在,試確定點
的位置,若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓柱的高為2,底面半徑為3,AE、DF是圓柱的兩條母線,B、C是下底面圓周上的兩點,已知四邊形ABCD是正方形.
(1)求證:
;
(2)求正方形ABCD的邊長;
(3)求直線
與平面
所成角的正弦值.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com