.(本小題滿分14分)
某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元~1000萬元的投資收
益.現(xiàn)準(zhǔn)備制定一個(gè)對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單
位:萬元)的增加而增加,且獎金不超過9萬元,同時(shí)獎金不超過投資收益的20%.現(xiàn)
有兩個(gè)獎勵方案的函數(shù)模型:(1)
;(2)
.試問這兩個(gè)函數(shù)模
型是否符合該公司要求,并說明理由.
解:設(shè)獎勵函數(shù)模型為y=f(x),由題意可知該公司對函數(shù)模型應(yīng)滿足下列條件:
當(dāng)x∈[10,1000]時(shí),①f(x)是增函數(shù);②f(x)≤9恒成立;③
恒成立.
①對于函數(shù)模型
:
當(dāng)x∈[10,1000]時(shí),f(x)是增函數(shù),則
.
所以f(x)≤9恒成立. …………………………3分
因?yàn)楹瘮?shù)
在[10,1000]上是減函數(shù),所以
.
從而
不恒成立.
故該函數(shù)模型不符合公司要求. …………………………7分
②對于函數(shù)模型f(x)=4lgx-3:
當(dāng)x∈[10,1000]時(shí),f(x)是增函數(shù),則
.
所以f(x)≤9恒成立. …………………………9分
設(shè)g(x)=4lgx-3
,則
.
當(dāng)x≥10時(shí),
,
所以g(x)在[10,1000]上是減函數(shù),從而g(x)≤g(10)=-1<0,
所以4lgx-3
<0,即4lgx-3<
,所以
恒成立.
故該函數(shù)模型符合公司要求. …………………………14分
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(diǎn)(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列{
}的通項(xiàng)公式;
(3)記
,求數(shù)列{
}的前n項(xiàng)和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第
天(
)的銷售價(jià)格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關(guān)于第
天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點(diǎn)
處的切線與直線
平行.
⑴ 求
,
滿足的關(guān)系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com