科目:高中數學 來源: 題型:解答題
如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.![]()
(1)求證:平面
平面
;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,在直三棱柱
(側棱垂直于底面的棱柱)中,
,
,
,
,點
是
的中點. ![]()
(Ⅰ) 求證:
∥平面
;
(Ⅱ)求AC1與平面CC1B1B所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本小題滿分12分)![]()
已知三棱錐PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=
AB,
N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)如圖,在三棱錐
中,面
面
,
是正三角形,
,
.
(Ⅰ)求證:
;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,直角梯形
與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值;
(3)線段
上是否存在點
,使
// 平面
?若存在,求出
;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
,∠ACB=900,M是AA1的中點,N是BC1的中點.![]()
(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com