直線
與曲線
相切于點(diǎn)
,則
。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三高考模擬考試(八)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,直線
,
為平面上的動點(diǎn),過點(diǎn)
作
的垂線,垂足為點(diǎn)
,且
.
(1)求動點(diǎn)
的軌跡曲線
的方程;
(2)設(shè)動直線
與曲線
相切于點(diǎn)
,且與直線
相交于點(diǎn)
,試探究:在坐標(biāo)平面內(nèi)是否存在一個定點(diǎn)
,使得以
為直徑的圓恒過此定點(diǎn)
?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江效實(shí)中學(xué)高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示的曲線
是由部分拋物線
和曲線
“合成”的,直線
與曲線
相切于點(diǎn)
,與曲線
相切于點(diǎn)
,記點(diǎn)
的橫坐標(biāo)為
,其中
.
![]()
(1)當(dāng)
時,求
的值和點(diǎn)
的坐標(biāo);
(2)當(dāng)實(shí)數(shù)
取何值時,
?并求出此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三上學(xué)期期末調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數(shù)
有兩個極值點(diǎn)
,且直線
與曲線
相切于
點(diǎn).
(1) 求
和![]()
(2) 求函數(shù)
的解析式;
(3) 在
為整數(shù)時,求過
點(diǎn)和
相切于一異于
點(diǎn)的直線方程
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com