(本題滿分14分) 如圖(1)在等腰
中,D,E,F(xiàn)分別是AB,AC和BC邊的中點(diǎn),
,現(xiàn)將
沿CD翻折成直二面角A-DC-B.(如圖(2))
![]()
(I)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(II)求二面角E-DF-C的余弦值;
(III)在線段BC是否存在一點(diǎn)P,但AP
DE?證明你的結(jié)論.
解:(Ⅲ)在線段BC上不存在點(diǎn)P,使AP⊥DE,……………………… 9分
證明如下:在圖2中, 作AG⊥DE,交DE于G交CD于Q由已知得
∠AED=120°,于是點(diǎn)G在DE的延長(zhǎng)線上,從而Q在DC的延長(zhǎng)線
上,過(guò)Q作PQ⊥CD交BC于P∴PQ⊥平面ACD ∴PQ⊥DE
∴DE⊥平面APQ∴AP⊥DE.但P在BC的延長(zhǎng)線上。………………… 12分
【法二】(Ⅱ)以點(diǎn)D為坐標(biāo)原點(diǎn),直線DB、DC為x軸、y軸,建立空間直角坐標(biāo)系,
![]()
設(shè)CD=a,則AC=BC=2a , AD=DB=
則A(0,0,
),B(
,0,0), C(0,
.……………………… 5分
取平面CDF的法向量為
設(shè)平面EDF的法向量為
,
則
得
,…………6分
,……………………………………… 7分
所以二面角E—DF—C的余弦值為
;…………………………… 8分
【解】(Ⅲ)設(shè)
,
又
, ……………………………………… 9分
………………………11分
把
,可知點(diǎn)P在BC的延長(zhǎng)線上
所以在線段BC上不存在點(diǎn)P使AP⊥DE. ……………………………………………… 12分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若A
CRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)
是⊙
:
上的任意一點(diǎn),過(guò)
作
垂直
軸于
,動(dòng)點(diǎn)
滿足
。
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)已知點(diǎn)
,在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請(qǐng)求出一個(gè)長(zhǎng)度為
的區(qū)間
,使![]()
![]()
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為
).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com