中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知直線l1的方程為3x+4y-12=0.
(1)若直線l2與l1平行,且過點(-1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.
【答案】分析:利用平行直線系方程特點設出方程,結合條件,用待定系數法求出待定系數.
解答:解:(1)由直線l2與l1平行,可設l2的方程為3x+4y+m=0,以x=-1,y=3代入,得-3+12+m=0,即得m=-9,
∴直線l2的方程為3x+4y-9=0.
(2)由直線l2與l1垂直,可設l2的方程為4x-3y+n=0,
令y=0,得x=-,令x=0,得y=,
故三角形面積S=•|-|•||=4
∴得n2=96,即n=±4
∴直線l2的方程是4x-3y+4=0或4x-3y-4=0.
點評:待定系數法求直線方程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l1的方程為3x+4y-12=0.
(1)若直線l2與l1平行,且過點(-1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1的方程為y=x,直線l2的方程為y=ax+b(a,b為實數),當直線l1與l2夾角的范圍為[0,
π
12
)時,a的取值范圍是( 。
A、(
3
3
,1)∪(1,
3
B、(0,1)
C、(
3
3
,
3
D、(1,
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1的方程為y=x,直線l2的方程為ax-y=0(a為實數).當直線l1與直線l2的夾角在(0,
π12
)之間變動時,a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•貴州模擬)已知直線l1的方程為mx+y=5,直線l2經過點(-4,3)且與圓x2+y2=25相切,若l1⊥l2,則m=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1的方程為y=x,直線l2的方程為ax-y=0(a為實數).當直線l1與直線l2的夾角在(0,
π
12
)之間變動時,a的取值范圍是
(
3
3
,1)∪(1,
3
)
(
3
3
,1)∪(1,
3
)

查看答案和解析>>

同步練習冊答案