中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設P為雙曲線x2-
y2
12
=1
上的一點,F1,F2是該雙曲線的兩個焦點,若|PF1|:|PF2|=3:2,則△PF1F2的面積為(  )
A、6
3
B、12
C、12
3
D、24
分析:根據雙曲線定義得|PF1|-|PF2|=2a=2,所以|PF1|=6,|PF2|=4,|F1F2|=2
13
,再由△PF1F2為直角三角形,可以推導出其面積.
解答:解:因為|PF1|:|PF2|=3:2,設|PF1|=3x,|PF2|=2x,
根據雙曲線定義得|PF1|-|PF2|=3x-2x=x=2a=2,
所以|PF1|=6,|PF2|=4,|F1F2|=2
13
(2
13
)2=52=62+42

△PF1F2為直角三角形,其面積為
1
2
×6×4=12

故選B.
點評:本題考查雙曲線性質的靈活運用,解題時要注意審題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:013

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(  )

A.     B.      C.-2      D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(  )

A.

B.

C. -2

D. -1

查看答案和解析>>

科目:高中數學 來源: 題型:

P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(  )

A.                   B.            C.             D.

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(    )

A.                B.                C.              D.

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是圓x2+(y-2)2=1上的一個動點,Q為雙曲線x2-y2=1上的一個動點,則|PQ|的最小值為(    )

A.           B.            C.-2            D.-1

查看答案和解析>>

同步練習冊答案