已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線
經(jīng)過
、
兩點(diǎn)
(1)求雙曲線
的方程;
(2)設(shè)直線
交雙曲線
于
、
兩點(diǎn),且線段
被圓
:
三等分,求實(shí)數(shù)
、
的值
(1)
;(2)
,
解析試題分析:(1)求雙曲線
的方程,可設(shè)雙曲線
的方程是
,利用待定系數(shù)法求出
的值即可,由雙曲線
經(jīng)過
、
兩點(diǎn),將
、
代入上面方程得,
,解方程組,求出
的值,即可求出雙曲線
的方程;(2)求實(shí)數(shù)
、
的值,直線
交雙曲線
于
、
兩點(diǎn),且線段
被圓
:
三等分,可知圓心與
的中點(diǎn)垂直,設(shè)
的中點(diǎn)
,則
,而圓心
,因此只需找出
的中點(diǎn)
與
的關(guān)系,可將
代人
,得
,設(shè)
,利用根與系數(shù)關(guān)系及中點(diǎn)坐標(biāo)公式得
,這樣可求得
的值,由
的值可求出
的長,從而得圓的弦長,利用勾股定理可求得
的值
試題解析:(1)設(shè)雙曲線
的方程是
,依題意有
2分
解得
3分 所以所求雙曲線的方程是
4分
(2)將
代人
,得
(*)
6分
設(shè)
,
的中點(diǎn)
,則
,
7分
則
,
,
8分
又圓心
,依題意
,故
,即
9分
將
代人(*)得
,解得![]()
10分
故直線
截圓
所得弦長為
,又
到直線
的距離
11分
所以圓
的半徑![]()
所以圓
的方程是
 
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
=1上任一點(diǎn)P,由點(diǎn)P向x軸作垂線PQ,垂足為Q,設(shè)點(diǎn)M在PQ上,且
=2
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)
且平行于x軸的直線上一動點(diǎn),且滿足
=
+
(O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:
=1(a>b>0)的離心率e=
,右焦點(diǎn)到直線
=1的距離d=
,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,點(diǎn)
,過
的直線
交拋物線
于
兩點(diǎn).
(1)若線段
中點(diǎn)的橫坐標(biāo)等于
,求直線
的斜率;
(2)設(shè)點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求證:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,左、右兩個焦點(diǎn)分別為
、
,上頂點(diǎn)
,
為正三角形且周長為6,直線
與橢圓
相交于
兩點(diǎn).
(1)求橢圓
的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的方程為
,斜率為1的直線不經(jīng)過原點(diǎn)
,而且與橢圓相交于
兩點(diǎn),
為線段
的中點(diǎn).
(1)問:直線
與
能否垂直?若能,
之間滿足什么關(guān)系;若不能,說明理由;
(2)已知
為
的中點(diǎn),且
點(diǎn)在橢圓上.若
,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點(diǎn)
、
分別是橢圓
的左、右焦點(diǎn),
為橢圓
上任意一點(diǎn),且
的最小值為
.
(I)求橢圓
的方程;
(II)設(shè)直線
(直線
、
不重合),若
、
均與橢圓
相切,試探究在
軸上是否存在定點(diǎn)
,使點(diǎn)
到
、
的距離之積恒為1?若存在,請求出點(diǎn)
坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知
是橢圓
的右焦點(diǎn);圓
與
軸交于
兩點(diǎn),其中
是橢圓
的左焦點(diǎn).![]()
(1)求橢圓
的離心率;
(2)設(shè)圓
與
軸的正半軸的交點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),試判斷直線
與圓
的位置關(guān)系;
(3)設(shè)直線
與圓
交于另一點(diǎn)
,若
的面積為
,求橢圓
的標(biāo)準(zhǔn)方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com