中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知:
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,sin
x
2
 ),x∈[
π
2
2
]

(1)求:|
a
+
b
|
的取值范圍;
(2)求:函數f(x)=2sinx+|
a
+
b
 |
的最小值.
分析:(1)把向量代入|
a
+
b
|
,求模,利用平方展開、浪跡花都余弦函數化簡,根據x的范圍確定它的取值范圍;
(2)求出函數f(x)=2sinx+|
a
+
b
 |
的表達式,化為一個角的一個三角函數的形式,根據x的范圍求出函數的最小值.
解答:解:(1)|
a
+
b
|
=
(cos
3
2
x+cos
x
2
)
2
+(sin
3
2
x-sin
x
2
)
2

=
2+2(cos
3
2
xcos
1
2
x-sin
3
2
xsin
1
2
x)   
=
2+2cos2x
(3分)
∵π≤2x≤3π,-1≤cos2x≤1,∴0≤|a+b|≤2(7分)
(2)f(x)=2sinx+|
a
+
b
|
=2sinx+
2+2cos2x
=2sinx-2cosx=2
2
sin(x-
π
4
)(10分)
π
4
≤x-
π
4
4
,得當x=
2
時,f(x)取得最小值-2   (14分)
點評:本題是基礎題,考查三角函數的化簡求值,向量的模的求法,考查計算能力,常考題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
cosθ
a
=
cos3θ
b
=
cos5θ
c
,求證:
a+c
a+b
=+
b
a

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
.
a
=(cos
2
,sin
2
),
.
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
],
(I)求
.
a
.
.
b
|
.
a
+
.
b
|
的最大值和最小值;
(II)若|k
.
a
+
.
b
|=
3
|
.
a
-k
.
b
|(k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cos
2
,sin
2
),
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
]

(1)求
a
b
|
a
+
b
|
的最大值和最小值;
(2)若|k
a
+
b
|=
3
|
a
-k
b
|(k∈R)
,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•合肥二模)已知f(x)是偶函數,當.x∈[0,
π
2
]時,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),則 a,b,c 的大小關系為(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知向量
.
a
=(cos
2
,sin
2
),
.
b
=(cos
θ
2
,-sin
θ
2
),θ∈[0,
π
3
],
(I)求
.
a
.
.
b
|
.
a
+
.
b
|
的最大值和最小值;
(II)若|k
.
a
+
.
b
|=
3
|
.
a
-k
.
b
|(k∈R),求k的取值范圍.

查看答案和解析>>

同步練習冊答案