(本小題滿分13分)
已知橢圓
.
與
有相同的離心率,過點
的直線
與
,
依次交于A,C,D,B四點(如圖).當直線
過
的上頂點時, 直線
的傾斜角為
.
![]()
(1)求橢圓
的方程;
(2)求證:
;
(3)若
,求直線
的方程.
解:(1)
.(2)見解析;(3)![]()
【解析】本試題主要是考查了橢圓方程的求解,以及利用直線與橢圓的位置關系求解直線的方程,證明線段相等的綜合運用。
(1)利用橢圓的幾何性質表示得到a,b,c的關系式,從而得到橢圓的方程。
(2)設直線與橢圓方程聯系,借助于坐標的關系來證明相等即可。
(3)在第二問的基礎上,進一步得到關于直線斜率k的表達式,化簡得到直線的方程,
解:(1)
,因此橢圓
的方程為
.
(2)當直線
垂直
軸時,易求得![]()
因此
,
當直線
不垂直
軸時,設![]()
由![]()
①,
由![]()
②,
設
,則
是方程①的解,
是方程②的解.
,
線段AB,CD的中點重合,![]()
(3).由(2)知,
,當直線
垂直
軸時,不合要求;
當直線
不垂直
軸時,設
,由(2)知,
,
,
![]()
![]()
![]()
,化簡可得:![]()
,![]()
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數![]()
.
(1)求函數
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數
在區間
上的圖象.
(3)設0<x<
,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為
的函數
是奇函數.
(1)求
的值;(2)判斷函數
的單調性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數列
的前
項和![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com