中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

已知方向向量為v=(1,)的直線l過點(0,-2)和橢圓C:

 

的焦點,且橢圓C的中心關于直線l的對稱點在橢圓C的右準線上.

(Ⅰ)求橢圓C的方程;(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C于點M、N,滿足cot∠MON ≠0(O為原點).若存在,求直線m的方程;若不存

 

在,請說明理由.

 

 

 

【答案】

(I)解法一:直線,  ①

過原點垂直的直線方程為,  ②

解①②得

∵橢圓中心(0,0)關于直線的對稱點在橢圓C的右準線上,

 

∵直線過橢圓焦點,∴該焦點坐標為(2,0).

  故橢圓C的方程為  ③

 

解法二:直線.

設原點關于直線對稱點為(p,q),則解得p=3.

 

∵橢圓中心(0,0)關于直線的對稱點在橢圓C的右準線上,

    ∵直線過橢圓焦點,∴該焦點坐標為(2,0).

 

  故橢圓C的方程為  ③

(II)解法一:設M(),N().

當直線m不垂直軸時,直線代入③,整理得

 

 

點O到直線MN的距離

 

      

 

      

 

整理得

當直線m垂直x軸時,也滿足.

故直線m的方程為

經檢驗上述直線均滿足.

所以所求直線方程為

解法二:設M(),N().

當直線m不垂直軸時,直線代入③,整理得

 

∵E(-2,0)是橢圓C的左焦點,

∴|MN|=|ME|+|NE|

=

 

以下與解法一相同.

解法三:設M(),N().

設直線,代入③,整理得

 

 

 

 

 

 

=,整理得      

 

解得

 

故直線m的方程為

 

經檢驗上述直線方程為

 

所以所求直線方程為

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案