中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)= (x<-2).

(1)求f(x)的反函數f-1(x);

(2)設a1=1, =-f-1(an)(n∈N*),求an;

(3)設Sn=a12+a22+…+an2,bn=Sn+1Sn是否存在最小正整數m,使得對任意n∈N*,有bn<成立?若存在,求出m的值;若不存在,說明理由.

(1) y=f-1(x)=- ,(x>0) (2) an= ,(3) 存在最小正整數m=6,使對任意n∈N*bn<成立


解析:

(1)設y=,∵x<-2,∴x=-,

y=f-1(x)=- (x>0)

(2)∵

∴{}是公差為4的等差數列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an=.

(3)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是減函數,

g(n)的最大值是g(1)=5,

m>5,存在最小正整數m=6,使對任意n∈N*bn<成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案