如圖,在直三棱柱
中,底面
為等腰直角三角形,
,
為棱
上一點(diǎn),且平面
平面
.
(Ⅰ)求證:
點(diǎn)為棱
的中點(diǎn);
(Ⅱ)判斷四棱錐
和
的體積是否相等,并證明。
![]()
【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,
易知
,
面
。由此知:
從而有
又點(diǎn)
是
的中點(diǎn),所以
,所以
點(diǎn)為棱
的中點(diǎn).
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。
(1)過點(diǎn)
作
于
點(diǎn),取
的中點(diǎn)
,連
。
面
面
且相交于
,面
內(nèi)的直線
,
面
。……3分
又
面
面
且相交于
,且
為等腰三角形,易知
,
面
。由此知:
,從而有
共面,又易知
面
,故有
從而有
又點(diǎn)
是
的中點(diǎn),所以
,所以
點(diǎn)為棱
的中點(diǎn).
…6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱
中, AB=1,
,
∠ABC=60
.
(1)證明:
;
(2)求二面角A—
—B的正切值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分13分)如圖,在直三棱柱
中,
,
分別為
的中點(diǎn),四邊形
是邊長為
的正方形.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題
如圖,在直三棱柱
中,
,
,
是
的中點(diǎn).
(Ⅰ)求證:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)試問線段
上是否存在點(diǎn)
,使
與
成
角?若存在,確定
點(diǎn)位置,若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆云南省高二9月月考數(shù)學(xué)試卷 題型:解答題
如圖,在直三棱柱
中,
,點(diǎn)
是
的中點(diǎn).
求證:(1)
;(2)
平面
.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com