中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

為調查某社區居民的業余生活狀況,研究這一社區居民在20:00-22:00時間段的休閑方式與性別的關系,隨機調查了該社區80人,得到下面的數據表:

     休閑方式
性別  
看電視
看書
合計

10
50
60

10
10
20
合計
20
60
80
 
(1)將此樣本的頻率估計為總體的概率,隨機調查3名在該社區的男性,設調查的3人在這一時間段以看書為休閑方式的人數為隨機變量X,求X的分布列和數學期望;
(2)根據以上數據,我們能否在犯錯誤的概率不超過0.01的前提下,認為“在20:00-22:00時間段居民的休閑方式與性別有關系”?
參考公式:K2,其中n=a+b+c+d.
參考數據:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

(1)P(X=k)=()3-k()k,k=0,1,2,3.
E(X)=np=3×
(2)休閑方式與性別無關系

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時)
(1)應收集多少位女生樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.

(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
附:


0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2013•天津)一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4; 白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片 (假設取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號為3的卡片的概率.
(2)再取出的4張卡片中,紅色卡片編號的最大值設為X,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統計,作出莖葉圖如下.記成績不低于90分者為“成績優秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班樣本中的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的兩個均“成績優秀”的概率;
(2)由以上統計數據填寫下面列聯表,并判斷是否有90%的把握認為:“成績優秀”與教學方式有關.
 
甲班(A方式)
乙班(B方式)
總計
成績優秀
 
 
 
成績不優秀
 
 
 
總計
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商店試銷某種商品20天,獲得如下數據:

日銷售量(件)
0
1
2
3
頻數
1
5
9
5
 
試銷結束后(假設該商品的日銷售量的分布規律不變),設某天開始營業時有該商品3件,當天營業結束后檢查存貨,若發現存貨少于2件,則當天進貨補充至3件,否則不進貨,將頻率視為概率。
(1)求當天商品不進貨的概率;
(2)記X為第二天開始營業時該商品的件數,求X的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點),所得點數分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩射手在同一條件下進行射擊,分布列如下:射手甲擊中環數8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環數8,9,10的概率分別為0.4,0.2,0.4.用擊中環數的期望與方差比較兩名射手的射擊水平.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲向靶子A射擊兩次,乙向靶子射擊一次.甲每次射擊命中靶子的概率為0.8,命中得5分;乙命中靶子的概率為0.5,命中得10分.
(1)求甲、乙二人共命中一次目標的概率;
(2)設X為二人得分之和,求X的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2011•山東)甲、乙兩校各有3名教師報名支教,期中甲校2男1女,乙校1男2女.
(1)若從甲校和乙校報名的教師中各任選1名,寫出所有可能的結果,并求選出的2名教師性別相同的概率;
(2)若從報名的6名教師中任選2名,寫出所有可能的結果,并求選出的2名教師來自同一學校的概率.

查看答案和解析>>

同步練習冊答案