中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(2014·孝感模擬)已知定義在區間[0,2]上的兩個函數f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數f(x)的最小值.
(2)對于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實數a的取值范圍.

(1)f(x)min=
(2)a∈(-∞,-5)∪(1,+∞)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

甲、乙兩個工廠,甲廠位于一直線河岸的岸邊處,乙廠與甲廠在河的同側,乙廠位于離河岸40千米的處,乙廠到河岸的垂足相距50千米,兩廠要在此岸邊之間合建一個供水站,從供水站到甲廠和乙廠的水管費用分別為每千米3元和5元,若千米,設總的水管費用為元,如圖所示,
(1)寫出關于的函數表達式;
(2)問供水站建在岸邊何處才能使水管費用最省? 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(是自然對數的底數,),且
(1)求實數的值,并求函數的單調區間;
(2)設,對任意,恒有成立.求實數的取值范圍;
(3)若正實數滿足,試證明:;并進一步判斷:當正實數滿足,且是互不相等的實數時,不等式是否仍然成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設該儲油罐的建造費用為千元.
(1)寫出關于的函數表達式,并求該函數的定義域;
(2)求該儲油罐的建造費用最小時的的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知都是實數,且
(1)求不等式的解集;
(2)若對滿足條件的所有實數都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水處理池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內的淋雨量包括兩部分:(1)P或P的平行面(只有一個面淋雨)的淋雨量,假設其值與×S成正比,比例系數為;(2)其它面的淋雨量之和,其值為,記為E移動過程中的總淋雨量,當移動距離d=100,面積S=時。

(1)寫出的表達式
(2)設0<v≤10,0<c≤5,試根據c的不同取值范圍,確定移動速度,使總淋雨量最少。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性;
(3)求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=logax(a>0且a≠1),如果對于任意的x∈都有|f(x)|≤1成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案