已知
在
處取得極值。
(Ⅰ)證明:
;
(Ⅱ)是否存在實數(shù)
,使得對任意
?若存在,求
的所有值;若不存在,說明理由。
(Ⅰ)詳見解析;(Ⅱ)存在唯一的實數(shù)a=
符合題意.
解析試題分析:(Ⅰ)由已知條件得f¢(x0)=0得到關(guān)于x0的關(guān)系式,再求出f(x0);(Ⅱ)將原不等式轉(zhuǎn)化為x2(lnx-a)+a≥0,考察關(guān)于x的函數(shù)g(x)=x2(lnx-a)+a的單調(diào)性,求出最小值g
=a-
e2a-1,再研究關(guān)于a的函數(shù)h(a)=a-
e2a-1,當a取哪些值時h(a)≥0.
試題解析:(Ⅰ)f¢(x)=
.
依題意,lnx0+x0+1=0,則lnx0=-(x0+1).
f(x0)=
=
=-x0.
(Ⅱ)f(x)≥
等價于x2(lnx-a)+a≥0.
設(shè)g(x)=x2(lnx-a)+a,則g¢(x)=x(2lnx-2a+1).
令g¢(x)=0,得x=
.
當x∈
時,g¢(x)<0,g(x)單調(diào)遞減;
當x∈
時,g¢(x)>0,g(x)單調(diào)遞增.
所以g(x)≥g
=a-
e2a-1.
于是f(x)≥
恒成立只需a-
e2a-1≥0.
設(shè)h(a)=a-
e2a-1,則h
=0,
且h¢(a)=1-e2a-1,h¢
=0.
當a∈(0,
)時,h¢(a)>0,h(a)單調(diào)遞增,h(a)<h
=0;
當a∈(
,+∞)時,h¢(a)<0,g(x)單調(diào)遞減,h(a)<h
=0.
因此,a-
e2a-1≤0,當且僅當a=
時取等號.
綜上,存在唯一的實數(shù)a=
,使得對任意x∈(0,+∞),f(x)≥
.
考點:導函數(shù)的應(yīng)用
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
是定義在
上的奇函數(shù),當
時,
(其中e是自然界對數(shù)的底,
)
(Ⅰ)設(shè)
,求證:當
時,
;
(Ⅱ)是否存在實數(shù)a,使得當
時,
的最小值是3 ?如果存在,求出實數(shù)a的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
的定義域為(0,
).
(Ⅰ)求函數(shù)
在
上的最小值;
(Ⅱ)設(shè)函數(shù)
,如果
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)m為實數(shù),函數(shù)f(x)=-
+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當m≤1且x>0時,
>2
+2mx+1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若
在
處的切線垂直于直線
,求該點的切線方程,并求此時函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對任意的
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
函數(shù)
,過曲線
上的點P
的切線方程為![]()
(1)若
在
時有極值,求
的表達式;
(2)在(1)的條件下,求
在[-3,1]上的最大值;
(3)若函數(shù)
在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com