中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖2-17,若直線PAB、PCD分別與⊙O交于點A、B、C、D,則下列各式中正確的是(    )

圖2-17

A.PA∶PC=PB∶PD                        B.PA∶PB=AC∶BD

C.PA∶PC=PD∶PB                        D.PB∶PD=AD∶BC

解析:若A正確,則PA·PD=PC·PB,與割線定理矛盾.

∵∠PCA=∠ABD,∠P=∠P,

∴△PAC∽△PDB.

PA∶PB不是對應邊,故B錯誤.

由割線定理PA·PB=PC·PD,

∴PA∶PC=PD∶PB,故C正確.

答案:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

拋物線有光學性質:由其焦點射出的光線經拋物線反象后,沿平行于拋物線對稱軸的肖向射出,反之亦然.如圖所示,今有拋物線C,其頂點是坐標原點,對稱輔為x軸.開口向右.一光源在點M處,由其發出一條平行于x軸的光線射向拋物線C卜的點P(4.4),經拋物線C反射后,反射光線經過焦點F后射向拋物線C上的點Q,再經拋物線C反射后又沿平行于X軸的方向射出,途中經直線l:2x-4y-17=0上點N反射后又射回點M.
(1)求拋物線C的方程;
(2)求PQ的長度;
(3)判斷四邊形MPQN是否為平行四邊形,若是請給出證明,若不是請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當的坐標系,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖2-1-17,空間四邊形SABC中,各邊及對角線長都相等,若E、F分別為SC、AB的中點,那么異面直線EF與SA所成的角等于(    )

A.90°               B.60°             C.45°           D.30°

         圖2-1-17

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖2-1-17,空間四邊形SABC中,各邊及對角線長都相等,若E、F分別為SC、AB的中點,那么異面直線EF與SA所成的角等于(    )

A.90°               B.60°             C.45°           D.30°

圖2-1-17

查看答案和解析>>

同步練習冊答案