已知橢圓
與
的離心率相等. 直線
與曲線
交于
兩點(diǎn)(
在
的左側(cè)),與曲線
交于
兩點(diǎn)(
在
的左側(cè)),
為坐標(biāo)原點(diǎn),
.
(1)當(dāng)
=
,
時(shí),求橢圓
的方程;
(2)若
,且
和
相似,求
的值.
(1)
的方程分別為
,
.(2)
.
解析試題分析:(1)由于已知中明確了曲線方程的形式,所以,關(guān)鍵是建立“待定系數(shù)”.由已知建立方程組即可得解.
(2)由于三角形相似,因此要注意利用對(duì)應(yīng)邊成比例,并結(jié)合
,建立
的方程.將
與方程![]()
,![]()
聯(lián)立可得
在坐標(biāo)關(guān)系.
利用
,得到
.
根據(jù)橢圓的對(duì)稱(chēng)性可知:
,
,又
和
相似,得到
,
于是從
出發(fā),得到
,即
的方程.
試題解析:
(1)∵
的離心率相等,
∴
,∴
, 2分
,將
分別代入曲線
方程,
由
,
由
.
當(dāng)
=
時(shí),
,
.
又∵
,
.
由
解得
.
∴
的方程分別為
,
. 5分
(2)將
代入曲線![]()
得![]()
![]()
將
代入曲線![]()
得
,![]()
由于
,
所以
,
,
,
.![]()
,
,
8分
根據(jù)橢圓的對(duì)稱(chēng)性可知:
,
, 又
和
相似,
,
,![]()
由
化簡(jiǎn)得![]()
代入
得
13分
考點(diǎn):橢圓的幾何性質(zhì),直線與圓錐曲線的位置關(guān)系,平面向量的數(shù)量積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)橢圓
的左頂點(diǎn)
作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為
,與
軸的交點(diǎn)為
,已知
.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線
與橢圓有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
,若
軸上存在一定點(diǎn)
,使得
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,
)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(
,0),動(dòng)直線l過(guò)點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:
·
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知拋物線方程為y2=4x,其焦點(diǎn)為F,準(zhǔn)線為l,A點(diǎn)為拋物線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),射線HAE垂直于準(zhǔn)線l,垂足為H,C點(diǎn)在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長(zhǎng)線分別交拋物線于點(diǎn)B和點(diǎn)D.![]()
(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫(xiě)出此時(shí)A點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)為原點(diǎn)
的拋物線
的焦點(diǎn)
與橢圓
的右焦點(diǎn)重合
與
在第一和第四象限的交點(diǎn)分別為
.
(1)若△AOB是邊長(zhǎng)為
的正三角形,求拋物線
的方程;
(2)若
,求橢圓
的離心率
;
(3)點(diǎn)
為橢圓
上的任一點(diǎn),若直線
、
分別與
軸交于點(diǎn)
和
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓
的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線
與橢圓
交于
兩點(diǎn),坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),M是l上的點(diǎn),F為橢圓C的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以OM為直徑的圓D交于P,Q兩點(diǎn).
①若PQ=
,求圓D的方程;
②若M是l上的動(dòng)點(diǎn),求證點(diǎn)P在定圓上,并求該定圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).![]()
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)F作直線交拋物線C于A,B兩點(diǎn).若直線AO、BO分別交直線l:y=x-2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com