在正方體ABCD-A1B1C1D1中,E、F分別是CD、A1D1中點(diǎn).
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點(diǎn)F,使BF⊥平面AEP,若存在,確定點(diǎn)P的位置;若不存在,說明理由.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為菱形,
,Q為AD的中點(diǎn).![]()
![]()
(1)若PA=PD,求證:平面
平面PAD;
(2)點(diǎn)M在線段上,PM=tPC,試確定實(shí)數(shù)t的值,使PA//平面MQB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐S
ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的
倍,P為側(cè)棱SD上的點(diǎn).![]()
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P
AC
D的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱ABCA1B1C1中,A1A=
AC,D、E、F分別為線段AC、A1A、C1B的中點(diǎn).![]()
(1)證明:EF∥平面ABC;
(2)證明:C1E⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長線上一點(diǎn),F(xiàn)P=t.過A、B、P三點(diǎn)的平面交FD于M,交FE于N.![]()
(1)求證:MN∥平面CDE;
(2)當(dāng)平面PAB⊥平面CDE時(shí),求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ、CB的延長線交于M,RQ、DB的延長線交于N,RP、DC的延長線交于K.![]()
求證:M、N、K三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2
,E,F分別是BC,AA1的中點(diǎn).![]()
求(1)異面直線EF和A1B所成的角.
(2)三棱錐A-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).![]()
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com