中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知a>0,函數.
(1)若,求函數的極值,
(2)是否存在實數,使得成立?若存在,求出實數的取值集合;若不存在,請說明理由.

(1)極小值,沒有極大值;(2)存在,.

解析試題分析:本題主要考查導數的應用、不等式等基礎知識,考查思維能力、運算能力、分析問題與解決問題的能力,考查函數、轉化與化歸、特殊與一般等數學思想方法.第一問,先求導數,判斷函數的單調性,根據極值的定義求極值;第二問,是恒成立問題,設出函數,此題可以轉化為求函數最值的問題,此題比較綜合.
試題解析:(1)當時,
因為,所以當時,,當時,,所以函數處取得極小值,函數沒有極大值.      4分
(2)令,即
,令
所以有兩個不等根,不妨設
所以上遞減,在上遞增,所以成立,
因為,所以,所以.

所以上遞增,在上遞減,
所以,又
所以代入
所以.       12分
考點:1.用導數求極值;2.用導數判斷函數的單調性;3.求函數最值;4.恒成立問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若直線與曲線上有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=+ax-lnx(a∈R).
(Ⅰ)當a=1時,求函數f(x)的極值;
(Ⅱ)當a≥2時,討論函數f(x)的單調性;
(Ⅲ)若對任意及任意∈[1,2],恒有成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若函數在區間上存在極值,求實數的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數的取值范圍,并且判斷代數式的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若時,求函數在點處的切線方程;
(2)若函數上是減函數,求實數的取值范圍;
(3)令是否存在實數,當是自然對數的底)時,函數的最小值是3,
若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當a=1時,求曲線在點(3,)處的切線方程
(2)求函數的單調遞增區間

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(其中).
(1) 當時,求函數的單調區間和極值;
(2) 當時,函數上有且只有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)討論的單調性;
(Ⅱ)試確定的值,使不等式恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若在(0,)單調遞減,求a的最小值
(Ⅱ)若有兩個極值點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案