中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設橢圓的中心在原點,焦點在軸上,離心率.已知點到這個橢圓上的點的最遠距離為,求這個橢圓方程.

設橢圓方程為, 為橢圓上的點,由 

 

  若,則當最大,即, ,故矛盾.

  若時,,

      所求方程為   


解析:

同答案

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設橢圓的中心在原點,焦點在x軸上,離心率e=
3
2
.已知點P(0,
3
2
)
到這個橢圓上的點的最遠距離為
7
,求這個橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓的中心在原點,坐標軸為對稱軸,焦點在x軸上,一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為4 ( 
2
-1 )

(1)求此橢圓方程,并求出準線方程;
(2)若P在左準線l上運動,求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓的中心在原點,坐標軸為對稱軸, 一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為-4,求此橢圓方程、離心率、準線方程及準線間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓的中心在原點,坐標軸為對稱軸,一個焦點與短軸兩端點的連線互相垂直,且此焦點與長軸上較近的端點距離為-4,求此橢圓方程.

查看答案和解析>>

同步練習冊答案