中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若a>0,b>0,且a+b=1.求證:
(Ⅰ)ab≤
1
4
;     
(Ⅱ)
4
3
1
a+1
+
1
b+1
3
2
分析:(Ⅰ)直接利用基本不等式,即可得到結論;
(Ⅱ)利用(Ⅰ)的結論,證明2<(a+1)(b+1)≤
9
4
,即可證明結論.
解答:證明:(Ⅰ)∵a>0,b>0,且a+b=1,
∴a+b=1≥2
ab

ab≤
1
4
;     
(Ⅱ)∵a>0,b>0,且a+b=1,
∴(a+1)(b+1)=ab+a+b+1=ab+2
∵0<ab≤
1
4

∴2<(a+1)(b+1)≤
9
4

4
9
1
(a+1)(b+1)
1
2

4
3
3
(a+1)(b+1)
3
2

4
3
(a+1)+(b+1)
(a+1)(b+1)
3
2

4
3
1
a+1
+
1
b+1
3
2
點評:本題考查基本不等式的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若a>0,b>0,且函數f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于(  )
A、2B、3C、6D、9

查看答案和解析>>

科目:高中數學 來源: 題型:

若a>0,b>0,且函數f(x)=
8
3
x3-ax2
-2bx+1在x=1處有極值,則ab的最大值等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若a>0,b>0,且4a+b=1,則
1
a
+
4
b
的最小值是
16
16

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•徐州三模)若a>0,b>0,且
1
2a+b
+
1
b+1
=1
,則a+2b的最小值為
2
3
+1
2
2
3
+1
2

查看答案和解析>>

同步練習冊答案