中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
函數f(x),g(x)的圖象分別如右圖1、2所示.函數h(x)=f(x)+g(x).則以下有關函數h(x)的性質中,錯誤的是(  )
分析:由已知中函數f(x),g(x)的圖象,可得函數f(x)為反比例函數,函數g(x)為正比例函數,進而根據正比例函數和反比例函數的圖象和性質,我們可以判斷出函數h(x)=f(x)+g(x)的性質,比照題目中的四個答案,即可得到結論.
解答:解:由已知中函數f(x)在x=0時沒有意義,故函數h(x)在x=0處沒有意義,故A正確;
又由f(x)為奇函數,函數(x)也為奇函數,故函數h(x)是奇函數,故C正確;
由于函數f(x),g(x)均即無最大值,也無最小值,故函數沒有最大值也沒有最小值,故D正確;
故選B
點評:本題考查的知識點是函數的圖象,其中熟練掌握正比例函數和反比例函數的圖象和性質是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在區間[m,n]上的兩個函數f(x)和g(x),如果對任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,則稱函數f(x)與g(x)在[m,n]上是“友好”的,否則稱“不友好”的.現在有兩個函數f(x)=loga(x-3a)與g(x)=loga
1x-a
(a>0,a≠1),給定區間[a+2,a+3].
(1)若f(x)與g(x)在區間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論函數f(x)與g(x)在區間[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于函數f(x),g(x),h(x),如果存在實數a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數.
(1)給出如下兩組函數,試判斷h(x)是否分別為f(x),g(x)的線性生成函數,并說明理由.
第一組:數學公式;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數t的取值范圍;
(3)已知數學公式的線性生成函數h(x),其中a>0,b>0.若h(x)≥b對a∈[1,2]恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省蘇州中學高三(上)調研數學試卷(解析版) 題型:解答題

對于函數f(x),g(x),h(x),如果存在實數a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數.
(1)給出如下兩組函數,試判斷h(x)是否分別為f(x),g(x)的線性生成函數,并說明理由.
第一組:;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數t的取值范圍;
(3)已知的線性生成函數h(x),其中a>0,b>0.若h(x)≥b對a∈[1,2]恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案