已知函數(shù)
在
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)若關(guān)于
的方程
恰有兩個不同的實根,求實數(shù)
的值;
(3)數(shù)列
滿足
,
,求
的整數(shù)部分.
(1)
;(2)
或
;(3)
.
解析試題分析:(1)由題意可得
,又根據(jù)
在
處的切線方程為
,故可從切線斜率
與切點
建立關(guān)于
的方程組
,可解得
,從而
;(2)由(1)及方程
,參變分離后可得:
,因此問題就等價于求使恰有兩個不同的
,滿足
的
的值,令
,
可得
,從而當(dāng)
時,
取極小值
,當(dāng)
時,
取極大值
,因此可以大致畫出
的示意圖,而問題則進一步等價于直線
與
的圖像恰有兩個交點,通過示意圖易得當(dāng)
或
時滿足題意;(3)通過題意可知,需求得
的值夾在哪兩個整數(shù)之間,由(1)
,可得
,因此
,而
,
∴
,∴
,而將遞推公式
可進一步變形為
,從而![]()
![]()
,
又有
,從而
的整數(shù)部分為
.
試題解析:(1)∵
,∴
, 由題意
在
處的切線方程為
,則
,∴
;
(2)由(1)
,∴
即
,∴
,因此問題即等價于存恰有兩個不同的
,使,令![]()
,則
,∴
在
上單調(diào)遞增,在
,
上單調(diào)遞減,∴當(dāng)
時,
取極小值
,當(dāng)![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,設(shè)曲線
在點
處的切線為
。
(1)求實數(shù)
的值;
(2)設(shè)函數(shù)
,其中
。
求證:當(dāng)
時,
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
是函數(shù)
的極值點,求曲線
在點
處的切線方程;
(2)若函數(shù)
在
上為單調(diào)增函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(其中
).
(1) 當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)
時,求函數(shù)
在
上的最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是函數(shù)
的一個極值點.
(1)求
與
的關(guān)系式(用
表示
),并求
的單調(diào)區(qū)間;
(2)設(shè)
,
在區(qū)間[0,4]上是增函數(shù).若存在
使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)校或班級舉行活動,通常需要張貼海報進行宣傳。現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計海報的尺寸,才能使四周空白面積最小?![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1當(dāng)
時,
與
)在定義域上單調(diào)性相反,求的
的最小值。
(2)當(dāng)
時,求證:存在
,使
的三個不同的實數(shù)解
,且對任意
且
都有
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com