中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

計算下列定積分.
(1)                       (2)

(1);(2)1.

解析試題分析:(1)含絕對值的式子的積分,一般要分類分段計算,實質就是去絕對值符號,按絕對值的正負分段;(2)一次分式函數積分公式:
試題解析:(1)
(2).
考點:(1)分段函數的積分;(2)一次分式的積分.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數
(1)當時,求曲線處的切線方程;
(2)當時,求函數的單調區間;
(3)在(2)的條件下,設函數,若對于 [1,2], [0,1],使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線方程為.
(I)求實數的值;
(Ⅱ)當時,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調性;
(3)設,對任意的,均存在,使得.試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象與直線相切于點.
(1)求實數的值; (2)求的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)當時,求的單調區間
(Ⅱ)若不等式有解,求實數m的取值菹圍;
(Ⅲ)定義:對于函數在其公共定義域內的任意實數,稱的值為兩函數在處的差值。證明:當時,函數在其公共定義域內的所有差值都大干2。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處切線方程為.
(1)求的值;
(2)討論的單調性,并求的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的最大值為0,其中
(1)求的值;
(2)若對任意,有成立,求實數的最大值;
(3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為區間.
(1)求函數的極大值與極小值;
(2)求函數的最大值與最小值.

查看答案和解析>>

同步練習冊答案