如圖所示的多面體中,
是菱形,
是矩形,
平面
,
,
.![]()
(1) 求證:平面
平面
;
(2) 若二面角
為直二面角,求直線(xiàn)
與平面
所成的角
的正弦值.
(1)見(jiàn)解析 (2)![]()
解析試題分析:
(1)根據(jù)面面平行的判斷,要證明平面
平面AED,只需要證明面FCB內(nèi)兩條相交的直線(xiàn)FB,BC與面AED平行,而B(niǎo)F與ED平行,BC與AD平行,即可得到兩相交直線(xiàn)都與面AED平行,進(jìn)而得到面面平行.
(2)該題方法比較多,可以利用幾何法和坐標(biāo)法,在此重點(diǎn)解析幾何法,延長(zhǎng)
到
,使
,由已知可得,
是平行四邊形,又
矩形,所以
是平行四邊形,
共面,由上證可知,
,
,
相交于
,
平面
,
為所求.
試題解析:
(1)矩形
中,
1分
平面
,
平面
,
平面
,2分
同理
平面
, 3分
又
平面
∥平面
4分
(2)取
的中點(diǎn)
.
由于
面
,
∥
,![]()
![]()
又
是菱形,
是矩形,
所以,
是全等三角形,![]()
所以
,
就是二面角
的平面角 8分![]()
![]()
解法1(幾何方法):
延長(zhǎng)
到
,使
,由已知可得,
是平行四邊形,又
矩形,所以
是平行四邊形,
共面,由上證可知,
,
,
相交于
,
平面
,
為所求.
由![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,底面
是邊長(zhǎng)為2的菱形,且
,以
與
為底面分別作相同的正三棱錐
與
,且
.![]()
(1)求證:
平面
;
(2)求平面
與平面
所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F是BC的中點(diǎn),AF與DE交于點(diǎn)G,將
沿AF折起,得到如圖所示的三棱錐
,其中
.![]()
![]()
(1) 證明:
//平面
;
(2) 證明:![]()
平面
;
(3)當(dāng)
時(shí),求三棱錐
的體積![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4).設(shè)a=
,b=
.
(1)求a和b的夾角θ;
(2)若向量ka+b與ka-2b互相垂直,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長(zhǎng)為1的正方形,E、F分別是棱B1B、DA的中點(diǎn).
(1)求二面角D1-AE-C的大小;
(2)求證:直線(xiàn)BF∥平面AD1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的所有棱長(zhǎng)都是2,又AA1⊥平面ABC,D,E分別是AC,CC1的中點(diǎn).![]()
(1)求證:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求點(diǎn)B1到平面A1BD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.![]()
(1)求證:AA1⊥平面ABC;
(2)求二面角A1BC1B1的余弦值;
(3)證明:在線(xiàn)段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,異面直線(xiàn)PA和CD所成角等于60°.![]()
(1)求證:面PCD⊥面PBD;
(2)求直線(xiàn)PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為
?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com