中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數,二次函數g(x)=ax2-2x+1.
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)若-(a12+a22)=a1a23+a2a13-2a12a22=a1a2(a1-a22與g(x)在區間(a,a+2)內均為單調函數,求實數a的取值范圍.
【答案】分析:(Ⅰ)由條件知函數f(x)的定義域是(0,+∞),a≠0.由.能討論討論函數f(x)的單調性.
(Ⅱ)由f(x)的定義域為(0,+∞),知a>0.故.由此能夠推導出實數a的取值范圍.
解答:解:(Ⅰ)由條件知函數f(x)的定義域是(0,+∞),a≠0.(2分)

∴當a>0時,f(x)在上單調遞增,
上單調遞減.
當a<0時,f(x)在(-a,+∞)上單調遞增,
在(0,-a)上單調遞減.(6分)
(Ⅱ)∵f(x)的定義域為(0,+∞),
∴a>0.(8分)

∴由(Ⅰ)知f(x)在(a,a+2)上單調遞增.(10分)
∴g(x)=ax2-2x+1在(a,a+2)上也單調遞增,

∴a≥1.(12分)
點評:本題考查二次函數的性質,解題時要認真審題,合理地進行等價轉化,注意導數的運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知實系數二次函數f(x)=ax2+bx+c對任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,數列{an}滿足an=g(an-1),問數列{an}能否構成等差數列,若能,請求出滿足條件的所有等差數列;若不能,請說明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數數學公式,二次函數g(x)=ax2-2x+1.
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)若-(a12+a22)=a1a23+a2a13-2a12a22=a1a2(a1-a22與g(x)在區間(a,a+2)內均為單調函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知實系數二次函數f(x)=ax2+bx+c對任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,數列{an}滿足an=g(an-1),問數列{an}能否構成等差數列,若能,請求出滿足條件的所有等差數列;若不能,請說明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知實系數二次函數f(x)=ax2+bx+c對任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,數列{an}滿足an=g(an-1),問數列{an}能否構成等差數列,若能,請求出滿足條件的所有等差數列;若不能,請說明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

同步練習冊答案