中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知展開式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…對x∈R且x≠0恒成立,方程
sinx
x
=0有無究多個根:±π,±2π,…±nπ,…,則1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比較兩邊x2的系數可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.設代數方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個不同的根:±x1,±x2,…±xn,類比上述方法可得a1=
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
.(用x1,x2,…,xn表示)
分析:由已知中式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…對x∈R且x≠0恒成立,方程
sinx
x
=0有無究多個根:±π,±2π,…±nπ,…,則,1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比較兩邊x2的系數可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.類比推理可由代數方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個不同的根:±x1,±x2,…±xn,轉化 為1-a1x2+a2x4-…+(-1)nanx2n=(1-
1
x
2
1
)(1-
1
x
2
2
)…(1-
1
x
2
n
)
,比較兩邊x2的系數即可得到答案.
解答:解:由1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
中,
比較兩邊x2的系數可以推得:1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6

類比揄代數方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個不同的根:±x1,±x2,…±xn
即1-a1x2+a2x4-…+(-1)nanx2n=(1-
1
x
2
1
)(1-
1
x
2
2
)…(1-
1
x
2
n
)
中,
比較兩邊x2的系數可以推得:a1=(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n

故答案為:(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
點評:本題考查的知識點是類比推理,其中由已知根據方程根的形式,將一個累加式變成一個累乘式,用到一次類比推理;現時觀察兩邊x2的系數得到結論,又用到一次類比,故難較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設代數方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n個不同的根±x1,±x2,…,±xn,則a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比較兩邊x2的系數得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展開式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
對x∈R,x≠0成立,則由于
sinx
x
=0
有無窮多個根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述結論可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>

同步練習冊答案