中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(文)已知直線l與曲線數學公式相切,分別求l的方程,使之滿足:
(1)l經過點(-1,-1);(2)l經過點(2,0);(3)l平行于直線y=-2x.

解:(1)由題意可得點(-1,-1)在曲線上,故切線的斜率為y′/x=-1=-1,
故切線的方程為 y+1=-1(x+1),即 x+y+2=0.
(2)設切線的斜率為k,則k≠0,切線的方程為 y-0=k(x-2),代入曲線的方程化簡可得
kx2-2kx-1=0,由△=4k2+4k=0 可得,k=-1.
故所求的直線方程為 y=-x+2.
(3)設直線l的方程為 y=-2x+m,代入曲線方程化簡可得 2x2-mx+1=0,
由△=m2-4 可得 m=2,或 m=-2
故所求的切線方程為
分析:(1)由題意可得點(-1,-1)在曲線上,故切線的斜率為y′/x=-1,用點斜式求直線方程.
(2)設切線的方程為 y-0=k(x-2),代入曲線的方程化簡,由判別式△=4k2+4k=0 可得k 值,用點斜式求直線方程.
(3)設直線l的方程為 y=-2x+m,代入曲線方程化簡,由△=m2-4 可求得m 值,從而得到所求的切線方程.
點評:本題考查用點斜式求直線方程,直線和曲線相切的性質,求出切線的斜率是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文)已知直線l與曲線y=
1x
相切,分別求l的方程,使之滿足:
(1)l經過點(-1,-1);(2)l經過點(2,0);(3)l平行于直線y=-2x.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廣州一模)(坐標系與參數方程選做題)在平面直角坐標系中,已知直線l與曲線C的參數方程分別為l:
x=1+s
y=1-s
(s為參數)和C:
x=t+2
y=t2
(t為參數),若l與C相交于A、B兩點,則|AB|=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•花都區模擬)已知直線l與曲線y=x2+3x-1切于點(1,3),則直線l的斜率為(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(文)已知直線l與曲線y=
1
x
相切,分別求l的方程,使之滿足:
(1)l經過點(-1,-1);(2)l經過點(2,0);(3)l平行于直線y=-2x.

查看答案和解析>>

同步練習冊答案