中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知拋物線,為坐標原點,動直線
拋物線交于不同兩點
(1)求證:·為常數;
(2)求滿足的點的軌跡方程。
(1)略(參考解析);(2).

試題分析:(1)拋物線與直線聯立.由向量的數量積結合利用韋達定理可得結論.(2)根據向量的相等得到點M關于A,B兩點的坐標關系,再由第一步的韋達定理消去k值即可.但要注意軌跡的范圍.本題主要就是拋物線與直線的知識.向量知識在解析幾何中的應用.
試題解析:解:將代入,整理得,
因為動直線與拋物線C交于不同兩點A、B,所以,即
 
解得:
,,則
(1)證明:·
== 
·為常數.
(2)解:

,則   消去得:
又由得:,  ,  ∴
所以,點的軌跡方程為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區域)”,其中、是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.

(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系中,為坐標原點,如果一個橢圓經過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知橢圓經過點,橢圓的離心率.

(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設點為直線上的點,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知動點到點的距離等于它到直線的距離,則點的軌跡方程是      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若實數滿足(其中是自然底數),則的最小值為_____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的右焦點為,過點的直線交橢圓于兩點.若的中點坐標為,則的方程為  (  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案