(本小題共14分)
已知橢圓
(
)的左、右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四
邊形
是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)若
、
分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)
滿足
,連結(jié)
,交橢圓于點(diǎn)
.證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點(diǎn)
的定點(diǎn)Q,使得以
為直徑的圓恒過直線
的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
(本小題共14分)
解:(Ⅰ)如圖,由題意得,
,![]()
,
.
![]()
所求的橢圓方程為
. …………………………………3分
(Ⅱ)由(Ⅰ)知,
(
,0),
(2,0). ………………………………………4分
由題意可設(shè)
:
,
(
,
).
![]()
,![]()
(2,
). ……………5分
由
整理得:
.
![]()
, ![]()
. ………………………………………7分
![]()
,
. ………………………………………8分
![]()
. ………………………………………9分
即
為定值.
(Ⅲ)設(shè)
,則
.
若以
為直徑的圓恒過
,
的交點(diǎn),則
,![]()
恒成立.……10分
由(Ⅱ)可知
,
. ………………………………12分
![]()
.即
恒成立.![]()
.
存在
使得以
為直徑的圓恒過直線
,
的交點(diǎn). ……………………………14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
數(shù)列
的前n項(xiàng)和為
,點(diǎn)
在直線![]()
上.
(I)求證:數(shù)列
是等差數(shù)列;
(II)若數(shù)列
滿足
,求數(shù)列
的前n項(xiàng)和![]()
(III)設(shè)
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上。
![]()
(Ⅰ)求證:平面
;
(Ⅱ)當(dāng)
且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線
的離心率為
,右準(zhǔn)線方程為![]()
(Ⅰ)求雙曲線
的方程;
(Ⅱ)設(shè)直線
是圓
上動(dòng)點(diǎn)
處的切線,
與雙曲線
交
于不同的兩點(diǎn)
,證明
的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD
底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF
PB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體
的棱長(zhǎng)為
,
是
與
的交點(diǎn),
為
的中點(diǎn).
(Ⅰ)求證:直線
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐
的體積.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com