中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設f(x)是定義在R上的奇函數,且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2
分析:由函數為奇函數可得f(-x)=-f(x),f(0)=0,結合函數y=f(x)滿足f(1-x)=f(x).分別令x=1,
3
2
,2,
5
2
,3,
7
2
代入可求
解答:解:由函數為奇函數可得f(-x)=-f(x),f(0)=0
∵函數y=f(x)滿足f(1-x)=f(x)
∴f(1)=f(0)=0,f(
3
2
)=f(1-
3
2
)
=f(-
1
2
)=-f(
1
2
)
=-2
f(2)=f(-1)=-f(1)=0,f(
5
2
)=f(-
3
2
)=-f(
3
2
)
=2,f(3)=-f(2)=0
f(
7
2
)=f(1-
7
2
)
=-f(
5
2
)
=-2
f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=-2
故答案為:-2
點評:本題主要考查了函數奇偶性的性質的綜合應用,解答本題的關鍵是熟練掌握奇函數的性質:f(0)=0的靈活應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

3、設f(x)是定義在R上的奇函數,且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的偶函數,當x≥0時,f(x)=2x+2x-1,則f(-1)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且對任意實數x,恒有f(x+2)=-f(x).當x∈[0,2]時,f(x)=2x-x2+a(a是常數).則x∈[2,4]時的解析式為(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習冊答案