已知橢圓
的右焦點為
,離心率為
.
(1)若
,求橢圓的方程; (2)設直線
與橢圓相交于
兩點,
分別為線段
的中點.若坐標原點
在以
為直徑的圓上,且
,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓
的離心率
,過右焦點
的直線
與橢圓
相交于
兩點,當直線
的斜率為1時,坐標原點
到直線
的距離為
.
(1)求橢圓
的方程
(2)橢圓
上是否存在點
,使得當直線
繞點
轉到某一位置時,有
成立?若存在,求出所有滿足條件的點
的坐標及對應直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖,已知橢圓
的長軸為
,過點
的直線
與
軸垂直,直線
所經過的定點恰好是橢圓的一個頂點,且橢圓的離心率![]()
![]()
(1)求橢圓的標準方程;
(2)設
是橢圓上異于
、
的任意一點,
軸,
為垂足,延長
到點
使得
,連接
并延長交直線
于點
,
為
的中點.試判斷直線
與以
為直徑的圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分 )已知橢圓![]()
經過點
,一個焦點是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
與
軸的兩個交點為
、
,點
在直線
上,直線
、
分別與橢圓
交于
、
兩點.試問:當點
在直線
上運動時,直線
是否恒經過定點
?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,
是拋物線![]()
的焦點,
是拋物線
上位于第一象限內的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.(Ⅰ)求拋物線
的方程;(Ⅱ)是否存在點
,使得直線
與拋物線
相切于點
若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com