已知橢圓的兩個焦點坐標分別是
,
,并且經過點
,求它的標準方程.
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點為F2,點F1與F2關于坐標原點對稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點P,Q且
.
(I)求點T的橫坐標
;
(II)若以F1,F2為焦點的橢圓C過點
.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,設
,若
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:
的焦點為F,
ABQ的三個頂點都在拋物線C上,點M為AB的中點,
.(1)若M
,求拋物線C方程;(2)若
的常數,試求線段
長的最大值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在平面直角坐標系
中,設橢圓
,其中
,過橢圓
內一點![]()
的兩條直線分別與橢圓交于點
和
,且滿足
,
,其中
為正常數. 當點
恰為橢圓的右頂點時,對應的
.
(1)求橢圓
的離心率;
(2)求
與
的值;
(3)當
變化時,
是否為定值?若是,請求出此定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左,右兩個頂點分別為
、
.曲線
是以
、
兩點為頂點,離心率為
的雙曲線.設點
在第一象限且在曲線
上,直線
與橢圓相交于另一點
.
(1)求曲線
的方程;
(2)設
、
兩點的橫坐標分別為
,
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知△ABC的周長為12,頂點A,B的坐標分別為(-2,0),(2,0),C為動點.
(1)求動點C的軌跡E的方程;
(2)過原點作兩條關于y軸對稱的直線(不與坐標軸重合),使它們分別與曲線E交于兩點,求四點所對應的四邊形的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com