中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
16、非空集合G關于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關于運算⊕為和諧集,現有下列命題:
①G={a+bi|a,b為偶數},⊕為復數的乘法,則G為和諧集;
②G={二次三項式},⊕為多項式的加法,則G不是 和諧集;
③若⊕為實數的加法,G⊆R且G為和諧集,則G要么為0,要么為無限集;
④若⊕為實數的乘法,G⊆R且G為和諧集,則G要么為0,要么為無限集,其中正確的有
②③
分析:根據已知中關于和諧集的定義:非空集合G關于運算⊕滿足:①對于任意a、b∈G,都有a⊕b∈G;②存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,我們利用題目四個結論中所給的運算法則,對所給的集合進行判斷,特別是對特殊元素進行判斷,即可得到答案.
解答:解:對于G={a+bi|a,b為偶數},⊕為復數的乘法,則根據偶數的和還是偶數,故滿足條件①,但不存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,不滿足條件②,
故①“G={a+bi|a,b為偶數},⊕為復數的乘法,則G為和諧集”不正確;
對于G={二次三項式},若a、b∈G時,a,b的兩個同類項系數,則其和不再為三項式,故G不是 和諧集,故②正確;
對于⊕為實數的加法,G⊆R且G為和諧集,G要么為{0}時滿足要求,若G中存在不為0的實數元素,則必為無限集,故③正確;
若⊕為實數的乘法,G⊆R且G為和諧集,則G可以為{0},也可以為{0,1},故④錯誤;
故答案為:②③
點評:此題以集合為載體,通過新定義“融洽集”,解決這類型題目時,心情平和是很重要的,對于每個小題,采用把這里的運算⊕換成每個小題給出的運算,逐個驗證就可得出正確答案.從這個題可以看出,對于常見的集合中的特殊元素,我們應該引起足夠的重視.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

非空集合G關于運算⊕滿足:(1)對任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”.現給出下列集合和運算:
①G={非負整數},⊕為整數的加法.
②G={偶數},⊕為整數的乘法.
③G={平面向量},⊕為平面向量的加法.
④G={二次三項式},⊕為多項式的加法.
⑤G={虛數},⊕為復數的乘法.
其中G關于運算⊕為“融洽集”的是
 
.(寫出所有“融洽集”的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

非空集合G關于運算⊕滿足:(1)對任意a,b∈G,都有a⊕b∈G;(2)存在e∈G,使得對一切a∈G,都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”;現給出下列集合和運算:①G={非負整數},⊕為整數的加法;   ②G={函數},⊕為函數的和;③G={不等式},⊕為同向不等式的加法;④G={虛數},⊕為復數的乘法.其中G關于運算⊕為“融洽集”的是

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•梅州二模)非空集合G關于運算⊕滿足:(1)對于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使對一切a∈G都有a⊕e=e⊕a=a,則稱G關于運算⊕為“融洽集”,現在給出集合和運算::
①G={非負整數},⊕為整數的加法;
②G={偶數},⊕為整數的乘法;
③G={平面向量},⊕為平面向量的加法;
④G={虛數},⊕為復數乘法,其中G為關于運算⊕的“融洽集”的個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

非空集合G關于運算滿足:①對于任意a、b∈G,都有a?b∈G;②存在e∈G,使對一切a∈G都有a?e=e?a=a,則稱G關于運算為融洽集,現有下列集合運算:
(1)G={非負整數},為整數的加法;
(2)G={偶數},為整數的乘法;
(3)G={平面向量},為平面向量的加法;
(4)G={二次三項式},為多項式的加法;
其中關于運算的融洽集有
(1)(3)
(1)(3)

查看答案和解析>>

同步練習冊答案